Second order monotone finite differences discretization of linear anisotropic differential operators

نویسندگان

چکیده

We design adaptive finite differences discretizations, which are degenerate elliptic and second order consistent, of linear quasi-linear partial differential operators featuring both a first term ananisotropicsecond term. Our approach requires the domain to be discretized on Cartesian grid, takes advantage techniques from field low-dimensional lattice geometry. prove that stencil our numerical scheme is optimally compact, in dimension two, quasi-optimal terms compatibility condition required operators, dimensions two three. Numerical experiments illustrate efficiency method several contexts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second-order differential equations on R+ governed by monotone operators

Consider in a real Hilbert space H the differential equation (E) : p(t)u′′(t) + q(t)u′(t) ∈ Au(t) + f(t), for a.a. t ∈ R+ = [0,∞), with the condition u(0) = x ∈ D(A), where A : D(A) ⊂ H → H is a maximal monotone operator, with [0, 0] ∈ A (or, more generally, 0 ∈ R(A)); p, q ∈ L∞(R+), with ess inf p > 0 and either ess inf q > 0 or ess sup q < 0; and f : R+ → H is a given function. Recall that eq...

متن کامل

NON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

In this article we have considered a non-standard finite difference method for the solution of second order  Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...

متن کامل

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Interpolation-based second-order monotone finite volume schemes for anisotropic diffusion equations on general grids

We propose two interpolation-based monotone schemes for the anisotropic diffusion problems on unstructured polygonal meshes through the linearity-preserving approach. The new schemes are characterized by their nonlinear two-point flux approximation, which is different from the existing ones and has no constraint on the associated interpolation algorithm for auxiliary unknowns. Thanks to the new...

متن کامل

non-standard finite difference method for numerical solution of second order linear fredholm integro-differential equations

in this article we have considered a non-standard finite difference method for the solution of second order  fredholm integro differential equation type initial value problems. the non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the fredholm integro-differential equation into a system of equations. we have also developed a numerical met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2021

ISSN: ['1088-6842', '0025-5718']

DOI: https://doi.org/10.1090/mcom/3671